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ABSTRACT: Nuclei detection in microscopy images is a major bottleneck in the discovery of new and 
effective drugs. Researchers need to test thousands of chemical compounds to find something of 
therapeutic efficacy. Nucleus being the most prominent part of a cell helps in the identification of individual 
cells in a sample and by analyzing the cell’s reaction to various treatments the researchers can infer the 
underlying biological process at work. Automating the process of nuclei detection can help unlock cures 
faster and speedup drug discovery. In this paper, we propose a custom encoder-decoder style fully-
convolutional neural network architecture with residual blocks and skip connections which achieves state-
of-the-art accuracy. We use spatial transformations for data augmentation to prevent our model from over-
fitting. We also use a combination of binary cross-entropy and dice-loss for our loss function which handles 
the class imbalance problem of the dataset. The proposed model is capable of segmenting nuclei effectively 
across a wide variety of cell types and experimental systems. The proposed model achieved a mean IOU of 
94.86 on the BBBC038v1 dataset. Automated nuclei detection is projected to improve throughput for 
research in the biomedical field by saving researchers several hundred thousand hours of effort every year. 

Keywords: Artificial Intelligence, Biomedical Image Processing, Computer Aided Analysis, Medical Expert Systems, 
Neural Networks, Nuclei Detection, Cell Images. 

I.  INTRODUCTION 

Search for new and effective drugs require trial of 
thousands of chemical compounds and observing the 
reactions for each to arrive at an inference. For medical 
analysis, batches of cells are prepared and the reaction 
of the cells is observed after adding different chemical 
compounds to each batch of cells. Preparing batches of 
cells and testing with different chemicals can be done 
on a large scale after robotic automation replaced 
manual labor. A major delay in the pipeline is analyzing 
the huge amount of cell images for various 
characteristics, for which we certainly need software 
aid. The first and the most effective approach for cell 
analysis is most often the detection of the nuclei. From 
there various properties of the cell can be calculated to 
find out their disease state. 
Let’s explain the current pipeline followed by a scientist. 
When the nuclei are more-or-less round and easily 
distinguishable from each other, a classical 
computational algorithm can satisfactorily segment the 
nuclei. But the software tends to fail if the cell images 
are complex and involve tissue samples, because then 
it becomes hard to distinguish each nucleus as they 
have complicated shapes and are closer to each other, 
sometimes even overlapping. In these cases, the 
scientist has to analyze each sample by eye and this 
cost a significant amount of time and effort. Imagine 
manually analyzing thousands of images to arrive at a 
conclusion. 
An accurate software model capable of nuclei 
identification in medical images without any arbitration 
will push the boundaries of biomedical image analysis 
and drug discovery and shorten the timespan to market 
a new drug. Classical image processing techniques 
require manual configuration, and existing models 
mainly specialize on specific types of cells. A single 
model intelligent enough to detect nuclei in different 

context and varying experimental system would save 
researchers a significant amount of time and effort and 
speed up the analysis by a huge margin. 
Nuclei Detection from cell images is a segmentation 
problem, and U-Nets are known to excel in medical 
segmentation tasks. In this paper we propose a fully 
convolutional custom U-Net based architecture with 
redesigned encoder and decoder. We optimize a BCE-
Dice loss function and train the model on the 
BBBC038v1 dataset with spatial data augmentation. 
This allows a lighter model to achieve higher accuracy  

II. RELATED WORKS 

With the recent advancements in the artificial 
intelligence domain, neural networks are being widely 
used in medical image analysis and have proven to give 
better results than most classical image processing 
algorithms. Research in the field of biomedical image 
segmentation has become more demanding as more 
powerful neural architectures and deep learning 
techniques are emerging every year. In this section we 
discuss the recent advances in this field related to 
nuclei segmentation for cell analysis. 
Nurzynska  et al., (2018) proposed a technique for 
searching the best parameters for color normalization 
for the task of segmenting the nucleus. Monte Carlo 
Simulation was used to search for the optimal 
parameters for color normalization which lead to better 
performance in segmentation [2]. 
Narotamo et al., (2019) proposed a combined approach 
of using a Fast YOLO architecture and U-Net model for 
detection and segmentation respectively. The authors 
trained their model on 2D fluorescence microscopy 
images. They showed that their model is more 
computationally effective against Mask R-CNN while 
sacrificing some performance. Their proposed model is 
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9 times faster than Mask R-CNN on image size of 1388 
× 1040 [3].  
Chen et al., (2019) proposed a model for segmentation 
of Caudate Nucleus in MRI scans of brain based on a 
distance regularized level-set evolution [4].  
Pan et al., (2019) proposed a model based on deep 
semantic network for segmentation of nuclei from 
pathological images. The authors used atrous depth 
wise separable convolution layers for their model (AS-
UNet) which increases the receptive field of the model. 
It extracts and combines features of multiple scales so 
that the model can perceive both small and large cells. 
Their model achieves promising performance [5]. 
Mahbod  et al., (2019) proposed a U-Net architecture 
with two stages for segmentation of touching nuclei in 
sections of hematoxylin and eosin stained tissue. 
Semantic segmentation with U-Net was followed by the 
creation of a distance map with a regression U-Net 
model. Based on the segmentation mask and distance 
map a watershed algorithm is used for instance 
segmentation. Their model achieves a Jaccard index of 
56.87% [6].  
Zeng et al., (2019) proposed a U-Net based model for 
nuclei segmentation which used residual blocks, and 

multi-scale feature and channel attention mechanism. 
Their model RIC-UNet achieves a Jaccard index of 
0.5635 while the original U-Net achieves 0.5462 on the 
Cancer Genomic Atlas (TCGA) dataset [7].  
Li et al., (2019) proposed a U-Net based model which 
utilizes boundary and region information, which 
provides a huge performance boost on overlapping 
glioma nuclei samples. They used a classification 
model to predict the boundary and the distance map is 
predicted by a regression model. These are further 
used to obtain the final segmentation mask. Their 
proposed architecture achieves a mean IOU of 0.59 on 
multi-organ nuclei segmentation open dataset 
(MoNuSeg) [8]. Sharma et al., (2020) have proposed a 
CNN based model for the prediction of paddy crop 
disease [18]. 
Zhou et al., (2019) proposed their (CIA-Net) for robust 
instance segmentation of nuclei. They used two 
separate decoders for separate tasks and a multi-level 
information aggregation module to captures the 
dependencies (spatial and texture) between the nuclei 
and the contour. This improved the generalizability of 
their model [9].  

 
Fig. 1. Original Images. 

 
Fig. 2. Original Masks. 

III. PROPOSED METHOD 

A. Dataset Used 
The BBBC038v1 dataset [1] is used for this experiment, 
which is accessible from Broad Bioimage Benchmark 
Collection Ljosa et al., Nature Methods, 2012]. The 
dataset contains 670 training images with more than 
twenty thousand annotated nuclei. The images were 
gathered from various sources including biomedical 
professionals in hospitals and industries and 
researchers in various universities. The dataset has a 
lot of variance as the cells belong to various animals 
and the imaging of the treated cells has been done in 
different experimental systems which involves variation 
in lighting conditions, microscope magnifications and 
histological stains. 

B. Data Augmentation Used 
Deep-learning based approaches require a lot of input 

data, but it is difficult to find such huge amount of data in 
the medical field. The dataset we are using contains 670 
images which are not sufficient for training a robust 
model, so we used specific data augmentation 
techniques to prevent our model from overfitting and 
make them generalize better and improve performance. 
In the case of medical images, spatial level 
transformations have already proven to give better 
results since they augment the data very close to real 
images. Especially elastic deformations and optical 
distortions work like charm while training a 
segmentation network. Shift and rotation invariances 
also work well with microscopy images. We used a lot of 
heavy augmentations: Horizontal Flip, Random 
Contrast, Random Gamma, Random Brightness, Elastic 
Transform, Grid Distortion, Optical Distortion, Shift 
Scale Rotate, etc. 
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Fig. 3. Augmented Images. 

 

Fig. 4. Augmented Masks. 

C. Model Architecture 
We used the semantic segmentation approach for our 
intended task of nuclei detection. Two of the most 
popular architectures in this domain are the Mask-RCNN 
[10] and the FCN [11] (Fully convolutional neural 
network) based segmentation net-works. FCN being a 
one-stage segmentation network is mostly preferred 
over two stage networks like Mask-RCNN for its 
simplicity and computational efficiency. The U-Net 
architecture [12] based upon the FCN architecture has 
been one of the most popular architecture for medical 
image segmentation recently. Our model is an 
improvement over the U-Net architecture. 
FCN based segmentation networks replace the fully 
connected layers of a conventional CNN architecture 
with fully-convolutional layers [15-17]. It uses an 
encoder-decoder architecture to learn the segmentation 
mask from the input image. The encoder learns the 
contextual information and the decoder learns the 
spatial information. Skip connections help the decoder 
network to use the spatial information from the higher 
layers of the encoder network and fuses them with the 
up-sampled features to learn the precise location of the 
nuclei in the images. This method gives fine grained 
segmentation masks. 

We use a 17 layers encoder network with residual 
blocks [13] which down-samples the feature map. We 
use convolution layers with a stride of 2 to down sample 
the images instead of using max-pooling. We only use 
max-pooling once at the beginning of the network. The 
decoder network uses transposed convolution layers to 
up-sample the feature maps, then concatenates features 
from encoder layers through skip connections, followed 
by residual blocks in each stage. Residual blocks allow 
easier optimization of deep networks while simple skip 
connections from encoder to decoder enable fine 
grained segmentation maps to be generated using in-
formation from the previous layers of the encoder. 
The resnet blocks helps in the gradient flow and thus 
allows us to make the UNet deeper. This in turn allows 
the model to learn better features. In this proposed 
method, we also use resnet blocks in the decoder 
network which increased the accuracy. The combination 
of Binary Cross entropy and Dice loss allows this deep 
model to be trained without being affected by the class 
imbalance. The spatial data augmentation prevents the 
model from being overfitted and helps the model to 
generalize better. 

 

Fig. 5. Residual Bottleneck Blocks. 
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Fig. 6. Model Architecture. 

Table 1: Encoder Details. 

Table 2: Decoder Details. 

Layers Filters Input Shape Output Shape 

Encoder Output — 8, 8, 512 

Stage 6 

Layer 1 transposed conv 256 8, 8, 512 16, 16, 256 
Layer 2 Concatenate ( [Stage 4 Block 2,  Stage 6 Layer 1] ) 

Block 1 
3 × 3 conv 
3 × 3 conv 

256 16, 16, 256 16, 16, 256 

Stage 7 

Layer 1 transposed conv 128 16, 16, 256 32, 32, 128 
Layer 2 Concatenate ( [Stage 3 Block 2,  Stage 7 Layer 1] ) 

Block 1 
3 × 3 conv 
3 × 3 conv 

128 32, 32, 128 32, 32, 128 

Stage 8 

Layer 1 transposed conv 64 32, 32, 128 64, 64, 64 
Layer 2 Concatenate ( [Stage 2 Block 2,  Stage 8 Layer 1] ) 

Block 1 3 × 3 conv 
3 × 3 conv 

64 64, 64, 64 64, 64, 64 

Stage 9 

Layer 1 transposed conv 64 64, 64, 64 128, 128, 64 
Layer 2 Concatenate ( [Stage 1 Layer 1,  Stage 9 Layer 1] ) 

Block 1 
3 × 3 conv 
3 × 3 conv 

64 128, 128, 64 128, 128, 64 

Stage 
10 

Layer 1 1 × 1 conv 2 128, 128, 64 128, 128, 2 

Outputs — 128, 128, 2 
  

Layers Filters Input Shape Output Shape 

Input — 256, 256, 3 
Stage 

1 
Layer 1 7 × 7 conv 64 256, 256, 3 128,128, 64 
Layer 2 3 × 3 maxpool — 128, 128, 64 64, 64, 64 

Stage 
2 

Block 1 
3 × 3 conv 
3 × 3 conv 

64 
64, 64, 64 
64, 64, 64 

64, 64, 64 
64, 64, 64 

Block 2 
3 × 3 conv 
3 × 3 conv 64 

64, 64, 64 
64, 64, 64 

64, 64, 64 
64, 64, 64 

Stage 
3 

Block 1 
3 × 3 conv, /2 

3 × 3 conv 
128 

64, 64, 64 
32, 32, 128 

32, 32, 128 
32, 32, 128 

Block 2 
3 × 3 conv 
3 × 3 conv 

128 
32, 32, 128 
32, 32, 128 

32, 32, 128 
32, 32, 128 

Stage 
4 

Block 1 3 × 3 conv, /2 
3 × 3 conv 

256 32, 32, 128 
16, 16, 256 

16, 16, 256 
16, 16, 256 

Block 2 
3 × 3 conv 
3 × 3 conv 256 

16, 16, 256 
16, 16, 256 

16, 16, 256 
16, 16, 256 

Stage 
5 

Block 1 
3 × 3conv, 

/2 
3 × 3 conv 

512 
16, 16, 256 
8, 8, 512 

8, 8, 512 
8, 8, 512 

Block 2 
3 × 3 conv 
3 × 3 conv 

512 
8, 8, 512 
8, 8, 512 

8, 8, 512 
8, 8, 512 
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D. Lost Function Used 
The most commonly used loss function for 
segmentation models is pixel wise cross-entropy loss 
which compares the class predictions for each pixel 
individually. Another very popular loss function used in 
biomedical image segmentation in soft-dice loss [14] 
which measures the overlap between two samples. For 
our task we optimize a BCE-Dice loss function which is 
basically binary cross-entropy added to soft-dice loss, 
which resulted in better performance and early 
convergence. The proposed model took only 60 epochs 
of training before early stopping. 
Binary Cross-Entropy Loss: 
��������� 	 �1 � �� log�1 � ���                                            (1) 
Soft-Dice Loss: 

          
�|�∩�|

|�|�|�| 
                                                                  (2) 

BCE-Dice Loss: 

��������� 	 �1 � �� log�1 � ��� 	  
�|�∩�|

|�|�|�|
                    (3) 

E. Evaluation Metric Used 
The most commonly used evaluation metrics are: pixel-
wise accuracy and the Jaccard index also known as the 
mean IOU. We used mean IOU as our evaluation metric 
which calculates the overlap between the target and 
prediction masks. We also chose this metric since it is 
closely related to dice coefficient used in the dice loss.  

                IOU �  
������ ∩ ��� !"�!#$

������ ∪ ��� !"�!#$
                                     (4) 

We also use other famous metrics mostly used for 
classification tasks like: Precision, Recall and F1-score 
to evaluate our model to get more insight about the 
performance of our model.  
             Precision �  

-.

-.�/.
                                                           (5) 

Precision tells us that, of all the pixels classified as 
belonging to a nucleus by the model, how many actually 
belonged to a nucleus. 
                  Recall �

-.

-.�/2
                                                             (6) 

Recall tells us that, of all the pixels that actually 
belonged to a nucleus how many did the model classify 
as belonging to a nucleus. 

             31 � score �  
�∗����"!5!#$ ∗ 6�"�77�

.��"!5!#$ � 6�"�77
                          (7) 

F1 score is the combination of precision and recall and 
is a better metric to judge classification tasks with 
imbalanced classes. A high F1-score means lower false 
positives and lower false negatives predicted by the 
model. This implies that the model is correctly 
classifying pixels in the nuclei region as 1 and pixels not 
in the nuclei region as 0. 

F. Algorithm 

Table 3: Results. 

Metric Value 

Precision 0.9734 
Recall 0.9738 

F1-score 0.9736 
IoU 0.9486 

Table 4: Comparison. 

Method IoU 

U-Net 90.77 
Wide U-Net 90.92 

UNet++ 92.63 
Our Model 94.86 

 
Algorithm1: Model Training 

 
1:  Build computational graph (model) 
2:  Initialize model weights 
3:  For I=0 to n_epochs do 
4:       Forward propagate through the computational 
          graph to calculate prediction (p) 
5:       Calculate loss:  

 

6:       Calculate accuracy metrics:  

 

7:       Append loss in dictionary  
          History[‘loss’] ← Loss 
8:       Append metric in dictionary  
          History[‘metric] ← IOU 
9:       Back propagate gradients through the  
          computational graph 
10:     Update weights:  

 

11:     If (Loss did not improve since last 10 epoch) 
12:           Break Loop 
13:     End If 
14:     If (Loss did not improve since last 5 epoch) 
15:           α = α x 0.1 
16:     End If 
17:  End For 
18:  Return Model, History 

IV. EXPERIMENTS AND RESULTS 

We resize the input images to 256 × 256 before feeding 
them into the network. Our network outputs masks of 
dimension 128 × 128. Since the proposed model is 
considerably deep, we use data augmentation to 
prevent overfitting thus increasing the generalizability of 
the model and improve overall performance. We used 
Adam optimizer and auto-reduced the learning-rate 
when the learning plateaued out. The model reached a 
validation IOU of 0.9486 with just 25 epochs of training 
before being early-stopped.  Using SGD optimizer gives 
a smooth training curve but takes 500 epochs to 
converge, while Adam takes 25 epochs but the initial 
training curve is quite abrupt. Fig. 7 and 8 shows the 
IOU and loss function curves for the training and 
validations sets for both the optimizers. Table 3 shows 
the results on the validation set and Table 4 compares 
our model with the top 3 state-of-the-art models for this 
specific task, and our model performs significantly 
better. 

 

Fig. 7. Accuracy metric and loss function plots for training and validation using adam optimizer. 
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Fig. 8. Accuracy metric and loss function plots for training and validation using sgd optimizer. 

 

Fig. 9 Testing Images. 

 

Fig. 10. Predicted Images. 

V. CONCLUSION 

Medical image processing has been gaining a lot of 
attention recently due to the emergence of deeper and 
high-accuracy segmentation networks which can 
compete against humans and speed-up biomedical 
research to a great extent. Nuclei detection has always 
been a very a crucial step for cell analysis and recently 
many computer aided analysis approaches are being 
used for faster and more accurate medical analysis. 
With the inception of deep learning based intelligent 
analysis algorithms, medical industry and researchers 
are replacing classical computational image processing 
algorithms with sophisticated deep learning models. 
Unlike classic image processing algorithms deep 
learning models do not require manual pre-processing 
or feature engineering, nor do they require any manual 
parameter tweaking.  In this paper the proposed model 
incorporates the latest advancements in the field of 
deep learning for accurate segmentation of nuclei from 
microscopy images of cells. It achieves an IOU of 
0.9486 which is a significant improvement over the 
state-of-the-art U-Net++ network. The proposed model 
works effectively across a wide variety of types of nuclei 
and experimental systems. Robustness to cell types 

and experimental setups has been our main focus. 
Tackling the problem of automated nuclei detection can 
help to improve the rate of drug discovery and enable 
faster cures thus improve overall health and quality of 
life of the people. 

VI. FUTURE SCOPE 

We plan to extend the method to include instance 
segmentation of the nuclei and nuclei counting. 
Instance segmentation helps in identifying each cell 
uniquely and cell counting is important for various 
medical diagnosis. This will further help in faster and 
better cell detection and experimentation. We also plan 
to extend this method to incorporate cell tracking.  
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